Исследования великих математиков. Основные математические формулы
Следующим важным этапом в развитии понятия о числе было введение отрицательных чисел, сделанное китайскими математиками за два века до н. э. Отрицательные числа применял в III веке древнегреческий математик Диофант, знавший уже правила действия над ними, а в VII веке эти числа уже подробно изучили индийские ученые, которые сравнивали такие числа с долгом. С помощью отрицательных чисел можно было единым образом описывать изменения величин. Уже в VIII веке было установлено, что квадратный корень из положительного числа имеет два значения — положительное и отрицательное, а из отрицательных чисел квадратный корень извлекать нельзя: нет такого числа , чтобы .
В XVI веке в связи с изучением кубических уравнений оказалось необходимым извлекать квадратные корни из отрицательных чисел. В формуле для решения кубических уравнений вида кубические и квадратные корни: .
Эта формула безотказно действует в случае, когда уравнение имеет один действительный корень (), а если оно имеет три действительных корня (), то под знаком квадратного корня оказывалось отрицательное число. Получалось, что путь к этим корням ведет через невозможную операцию извлечения квадратного корня из отрицательного числа. Вслед за решением уравнения 4-й степени математики усиленно искали формулу для решения уравнения 5-й степени. Но Руффини (Италия) на рубеже XVIII и XIX веков доказал, что буквенное уравнение пятой степени нельзя решить алгебраически; нельзя выразить его корень через буквенные величины a, b, c, d, e с помощью шести алгебраических действий (сложение, вычитание, умножение, деление, возведение в степень, извлечение корня).
В 1830 году Галуа (Франция) доказал, что никакое общее уравнение, степень которого больше четырех, нельзя решить алгебраически. Однако всякое уравнение n-й степени имеет (если рассматривать и комплексные числа) n корней (среди которых могут быть и равные). В этом математики были убеждены еще в XVII веке, основываясь на разборе многочисленных частных случаев, но лишь на рубеже XVIII и XIX веков упомянутая теорема была доказана Гауссом.
Итальянский алгебраист Дж. Кардана в 1545 г. предложил ввести числа новой природы. Он показал, что система уравнений , не имеющая решений во множестве действительных чисел, имеет решения вида , , нужно только условиться действовать над такими выражениями по правилам обычной алгебры и считать, что . Кардана называл такие величины “чисто отрицательными” и даже “софистически отрицательными”, считал их бесполезными и старался их не употреблять. В самом деле, с помощью таких чисел нельзя выразить ни результат измерения какой-нибудь величины, ни изменение какой-нибудь величины. Но уже в 1572 году вышла книга итальянского алгебраиста Р. Бомбелли, в которой были установлены первые правила арифметических операций над такими числами, вплоть до извлечения из них кубических корней. Название “мнимые числа” ввел в 1637 году французский математик и философ Р. Декарт, а в 1777 году Л. Эйлер, один из крупнейших математиков XVIII века, предложил использовать первую букву французского слова imaginaire (мнимый) для обозначения числа (мнимой единицы). Этот символ вошел во всеобщее употребление благодаря К. Гауссу. Термин “комплексные числа” также был введен Гауссом в 1831 году. Слово комплекс (от лат. complexus) означает связь, сочетание, совокупность понятий, предметов, явлений, образующих единое целое.